

Argos credit scoring module

Introduction

The ARGOS system scores new and existing clients of financial institutions. The AR-GOS Credit Scoring module uses the information and attributes acquired during a standardised credit origination process. Typically, this information is processed in client intake forms, evaluation forms, and financial overviews. The system is server based and can work via the Internet, Extranet of an internal network. On the user side the application present itself through a regular browser. The ARGOS system is entirely base on open-source components and an open-source database.

Getting started

To kick-start the ARGOS Scoring system a set of historical loan portfolio is uploaded into the system. This can be done through a file such as Excel, CSV, XML or JSON, a web-service, or on a database level in an existing banking system.

Statistical overview

The ARGOS system produces and maintains a statistical breakdown of the historical lending portfolio and determines the differences in attributes between fully reimbursed loans and problem credits.

This statistical overview immediately provides insight into which attributes present increased default risk. In case an attribute does not have a link with the default behaviour, the financial institution might consider eliminating this question from the intake process thus simplifying the forms and paperwork.

*	General information				✤ Total statistics	
		you can find sta e historical data	atistics regarding the relevant a.			
	Field Description	Age				Bracket: < 20: 171
*	Default statistics	0	✤ Non-default statistics	0		
				-		Nr of instances
				-	Bracket: 20 - 29	240
					Bracket: 50 and older	147
					Bracket: < 20	171
	Nr	of Defaults	Nr of Nor	n-defaults	Bracket: 40 - 49	191

Figure 1 Breakdown by age: the age bracket under twenty has a strong presence in the dossiers in distress.

Figure 2 Breakdown of the field attributes by contribution to default risk: the category under 20 jumps to the front.

Intake interview forms

The Argos Scoring Module automatically generates an on-screen intake form itemising the questions that were previously included in the loan origination paperwork.

0	Please fill out the	values for each of the	categories below. Onc	e you are done, you car	continue to the Bayes	sian Scoring tab or any othe	er tab.
✓ Input	list						
✓ inpu	LIISL						
	Field			Input			
0	Field		v	Input			
_			•	Input			
0	Gender			Input			
0	Gender Age		T	Input			

Figure 3 The Argos system generates automatically an input form with all the possible options listed in the pull-down menu.

For each of the question a pull-down menu is generated listing the various answer options. This helps financial institutions to move to a paperless environment. Furthermore, all the data is stored and kept in a database and available for statistical analysis. Moreover, the Argos system keeps track in its audit log who filled out what information when. This is an important for future audits.

Multiple credit scoring approaches

The Argos Scoring Module offers multiple scoring models that can be applied in parallel:

- 1. The Bayesian method based on historical data;
- 2. The logistic regression method based on historical data;
- 3. The expert method based on the credit managers' expertise, and
- 4. Scientific models based on financial and economic theory, for which we present the Altman Z-score as an example.

Bayesian approach

	Attribute	Value	Prior	8	The general formula for the Bayesian credit scoring reads as
D	Gender	Female	12%		follows:
	Age	Bracket: 20 - 29	2%		$P(X A) = \frac{P(A \cap X)}{P(A)} = \frac{P(A X)P(X)}{P(A)}$
D	Activity	Cattle farm	2%		P(A) = P(A) = P(A)
D howi	Married ing 1 to 4 of 4 entr	Married without children	9%		This formula is called <i>Bayes' theorem</i> and helps to calculate the probability of default X given a specific attribute A. The formula needs to be applied multiple times if new information comes in. In that way it is possible to calculate the probability of default X given a range of attributes A, B, C,
					Prediction 1.00%

Figure 4 Bayesian scoring: the prior expected PD is 5%, however, given that the client is female, aged 24, is married and runs a cattle farm, the expected PD is just 1%. We see the impact of the various attributes on the PD to the left.

Logistic regression approach

The logistic regression approach builds on the well-known linear regression method but allows for non-continuous variables. The outcome of a logistic regression analysis is called the odds on a 0-100% scale. These odds can be interpreted as a PD value.

٠	Field input list			ໍ❤ Resu	ilt
	Attribute	Value	Coefficient		
0	Age	20-35	-0.09	6	The probability function is defined as follows:
0	Gender	Female	-0.16		1
0	Activity	COMMERCE	-0.87		$P(Y=1)=rac{1}{1+e^{-g(x)}},$
0	Amount	1000 to 2000	0.06		with
0	Experience	1-10	-0.75		
0	Education	Primary	0.06		$g(x)=eta_0+eta_1*x_1+\ldots+eta_n*x_n.$
Showir	ng 1 to 6 of 6 entries				Positive coefficients indicate a higher chance of defau Negative coefficients indicate a lower chance of defau

Figure 5 Logistic regression scoring: the PD is calculated on the right bottom side The Argos system also provides the coefficients necessary to produce the logistic regression function.

Expert approach

Often financial institutions make use of a home-made expert scoring system that weighs the answer provided by the client. The Argos Scoring Module provides a convenient configuration screen to capture this expert scoring, the configuration asks for weighing each of the questions, with the sum of all weights equalling 100%, as well as weighing each of the possible answers. Probably, a team of seasoned credit risk staff is best suited to perform this task.

Expert modelinput				
Attribute Gender		Option	14	Score↓↑
Weight ⁶	1	Female Male		1
		Showing 1 to 2 of 2 entr	ies	
Expert model input		Showing 1 to 2 of 2 entr	ies	
Expert model input Attribute Activity		Showing 1 to 2 of 2 entr	ies Jà	Score∬↑

Figure 6 Configuring the expert scoring module by assigning weights to the various intake questions and the answer options. High grades indicate a lower default probability.

The Argos system will calculate a weighted and unweighted score for each loan request.

Data input Bayesian scoring Expert scoring Workflow Image: This page shows the results of the Expert credit scoring. Please fill out the values for each of the categories below. Once you are done, you cate to click on Calculate scores in order to calculate the final score for the given input. For the Expert Scoring, the following rule applies: The higher the scores, the better the expected performance of the case. <td< th=""><th>bay colair cooring</th><th></th><th>t scoring</th><th>Workflow</th><th></th><th></th><th></th><th></th></td<>	bay colair cooring		t scoring	Workflow				
to click on Calculate scores in order to calculate the final score for the given input. For the Expert Scoring, the following rule applies: The higher the scores, the better the expected performance of the case. Field input list Attribute Input Weight Score Max. Gender Female 1 1 3.12 4			J					
Attribute Input Weight Score Average score Max. score Expert scoring (weighted) Expert scoring (weighted)	to click on Calcula	ate scores in	n order to ca	alculate the fir	al score for t	he given inp	put.	
Attribute Input Weight Score Max. score Expert scoring Expert scoring 83.33% Gender Female 1 1 3.12 4 4	anut list					~	Result	
Attribute Input Weight Score score score (weighted) 83.33% Gender Female 1 1 3.12 4 4	iparinor						Expert scoring	78.95%
O Gender Female 1 1 3.12 4				-			Expert scoring	83.33%
□ Age Bracket: 20 - 29 1 4 3.63 5	e Input	Weight	Score	score	score		(weighted)	00.0070
		-					(weighted)	
Gender		to click on <i>Calcula</i> For the Expert Sco	to click on <i>Calculate scores</i> in For the Expert Scoring, the fo	to click on <i>Calculate scores</i> in order to c	to click on <i>Calculate scores</i> in order to calculate the fir For the Expert Scoring, the following rule applies: <i>The</i>	to click on <i>Celculate scores</i> in order to calculate the final score for t For the Expert Scoring, the following rule applies: <i>The higher the sc</i>	to click on <i>Calculate scores</i> in order to calculate the final score for the given in For the Expert Scoring, the following rule applies: <i>The higher the scores, the b</i>	to click on <i>Calculate</i> scores in order to calculate the final score for the given input. For the Expert Scoring, the following rule applies: <i>The higher the scores, the better the expected performance</i> or nput list

Figure 7 Results of the export scoring are shown to the right: in this example a high score indicates a low default probability. To the left a break-down of the various scoring attributes.

Many financial institutions will opt for using the expert scoring, logistic and Bayesian scoring in parallel. It is possible to use a combined score for which the two scores are weighted by the management.

Scoring based on financial statement

It is important to notice that the Altman Z-score is just an example for a class of credit scoring models. Other models could be used if the underlying logic is known, and the input parameters will be available. The Altman Z-score is entirely based on data available in the applicant's income statement and balance sheet.

Component	Weight	Definition
X1	1.200	Working Capital / Total Assets
X2	1.400	Retained Earnings / Total Assets
X3	3.300	Earnings Before Interest and Taxes / Total Assets
X4	0.600	Market Value of Equity / Total Liabilities
X5	0.999	Sales / Total Assets

Figure 8 The Altman Z-score uses intermediate ratios based on financial report data. The ratios are weighted.

Using an intermediate step, the Altman Z-score is calculated and scaled to a threestep outcome: 1) Safe, 2) Grey, and 3) Distress. This scoring approach does not require uploading historical data and is geared toward the scoring of larger companies.

	Name Demo Altman Z Score V01 Description Demo Altman Z Score <u>V01</u>		*
		✓ pones	
Weight X1	1.20 🖌	Gray zone lower marge	1.00
Weight X2	1.40 🖌	Gray zone upper marge	2.00
Weight X3	3.30 🖌		
Weight X4	0.60 🖌		
Weight X5	1.00 🛩		

Figure 9 Configuring the weights in the Altman Z-score and determining the cut-off values for the scoring results.

Please add a value for all financial parameters below	to calculate the Altman Z-Score.	The following ratios have been obta	sined.	
1. EBIT	\$500.00	Ratio X1		-0.14
2. Total assets	\$7,000.00		Weight	1.20
3. Net sales	\$20,000.00	Ratio X2 0		0.43
4. Market Value of Equity	\$10,000.00		Weight	1.40
5. Total liabilities	\$7,000.00	Ratio X3 ^O		0.07
6. Current assets	\$1,000.00		Weight	3.30
7. Current liabilities	\$2,600.00	Ratio X4		1.43
8. Retained earnings	\$3,000.00		Weight	0.60
		Ratio X5 O		2.06
			Weight	1.00

Figure 10 Entering the financial data and the calculation of the Altman Z intermediate ratios to the right.

✓ Outcome				
The following Altman Z-Score has be	en obtained.			
	aray zone lower marge	[1.00	
	Gray zone upper marge		2.00	
	Altman Z-Score		4.38	
	Outcome	Safe		

Figure 11 Altman Z score with interpretation.

It Is important to repeat that the Altman-Z score is just one example of possible scoring approaches using financial report inputs.

Performance tracking

The performance of the score system is continuously monitored against historical loan data. Well-known methods such as the confusions matrix, the Receiver Operating Characteristics (ROC) an Area Under Curve (AUC) are used.

A confusion matrix shows the performance in the numbers of false positives and false negatives. In other words, how many clients would the model have accepted that should not be accepted, and, how many clients would the model reject that should not have been rejected? Ideally, both numbers are zero. There is a trade-off between false positives and false negatives: the stricter the bank's credit demand evaluation policy, the lower the number of false positives. However, the collateral damage will be a larger number of false negatives. Conversely, the more relax the bank's policy, the higher the number of false positives. It is important to underline that for most financial institutions these two events do not have an equal impact. Accepting a client that one should not have accepted will result in a much bigger loss than forgoing the margin on a client that was sent away unjustly. If the bank makes a gross margin of 5% on a loan, it would take twenty good loans to compensate for one complete write-off. This is would result in a 1 : 20 ratio.

Cost ratio	20	True negative	37	False negative	97
Cut-off value	0.09	False	13	True	853

Figure 12 Confusion matrix showing the model's performance in terms of false positives and false negatives. The cost ratio is in this example set at 1 : 20.

The system also optimises the cut-off value to make the optimal decision between accepting or rejecting a credit demand, taking into consideration the cost value defined earlier. This cut-off value could be used to channel credit request via various approval processes within the bank.

Audit log

dit	log								Export - C
Se	arch:	Actor 🔻	Co	ntains V		Go			
	↓ Actor	Database 🕼 object	i Jî ID	Property ↓↑ name	Event ↓1 name	Old value	tî Urrent value	Date.↓↑ created	Last ≬ ↑ updated UF
0	super	SecUser	1	userLanguage	UPDATE	com.stachanov.internal.i18n.Languag	ge com.stachanov.internal.i18n.Language : 3	2017-12-10 14:05	2017-12-10 14:05
0	super	TranslationFile	7		INSERT			2017-12-10 14:08	2017-12-10 14:08
0	super	TranslationFile	7	dateProcessed	UPDATE		Sun Dec 10 14:08:25 CET 2017	2017-12-10 14:08	2017-12-10 14:08
0	super	TranslationFile	7	dateUploaded	UPDATE		Sun Dec 10 14:08:22 CET 2017	2017-12-10 14:08	2017-12-10 14:08
0	super	TranslationFile	8		INSERT			2017-12-11 16:00	2017-12-11 16:00
0	super	TranslationFile	8	dateProcessed	UPDATE		Mon Dec 11 16:00:40 CET 2017	2017-12-11 16:00	2017-12-11 16:00

All actions of users are tracked via an audit log to meet accounting requirements.

Figure 13 The audit log tracks all changes in the system: who has done what, when?

The Argos Credit Scoring Module generates automatically a PDF with all the scoring information that can be downloaded or printed. This document could be presented to the bank's credit committee or management.

Printable reports

It is possible to create Word, Excel and PDF reports based on a template and data in the system. This way a credit proposal or even a loan contract can be generated.

		te 2018 Aug 08		
		le Stachanov, Ale er Test Loan Regi		
		on Test Loan Requ		
	SUI	MMARY		
lient input	& scores			
Client input Field	& scores	Score	Maximum score	Prior
		Score		Prior 12.29%
Field	Input		score	

Figure 14 Example of PDF generated by the Argos Scoring Module.

Connectivity

Financial institutions can use the Argos Credit Scoring Module on a stand-alone basis or choose to embed the scoring module in a complete Argos Workflow System. All the Argos platform components are based on open-source technology which has obvious benefits in terms of support and license fees. The Argos platform can interface with existing core banking systems through web services or based on file uploads in standardised formats such as CSV, XLXS, JSON, and XML.

Conclusion

The Argos Credit Scoring module is a comprehensive and transparent scoring solution that can easily be implemented in existing and new loan origination processes.

About us

ARGOS is a product developed Our specialists are always prepared to answer your enquiries. If you are interested in the Argos credit scoring system, and would like to know more about it, our partners are pleased to give you a presentation and a product demonstration to show all its features. by STACHANOV, a company located Amsterdam, the Netherlands. The company is a renowned niche-specialist in the design, construction and implementation of financial models and IT-applications for the financial industry. At STACHANOV, we distinguish ourselves through vigour, a lust for work and dedication. We have been delivering solutions to clients, at home and overseas, for over fifteen years. Relations appreciate our serious, no-nonsense attitude, and our ISO-certifications regarding 9001, 14001 and 27001 support our professional approach and execution.

Company information

STACHANOV Lamonggracht 7 Java Island 1019 RD Amsterdam The Netherlands Tel : +31 20 509 10 10 Fax : +31 20 509 10 19 E-mail : info@stachanov.com

CHANOV

Chamber of Commerce: 34247181 0000 General Terms of Business deposited: July 5, 2010 VAT number: NL-815655320 B 01 D-U-N-S number: 386311708 Bank account: RABO 148968694 BIC / Swiftcode: RABONL2U IBAN: NL53RABO0148968694

Contact us

In case you have any questions about Argos or our company, feel free to contact us or check out our website (www.argos.com). Our specialists are always prepared to answer your enquiries. If you are interested in the Editua system, and would like to know more about it, our partners are pleased to give you a presentation and a product demonstration to show all of its features.

André Koch

Partner T +31 (0)20 509 1010 M +31 (0)6 511 85 564 E andre@stachanov.com